Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 9(4): 155, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30944802

RESUMO

In this study, Rhizophora mangle L. mangrove plants and plant growth-promoting bacteria were evaluated for their ability to degrade polycyclic aromatic hydrocarbons in diesel oil-contaminated sediment. The diesel-contaminated soil was sown with plant growth-promoting bacteria in the R. mangle L. rhizosphere and monitored for 120 days in a greenhouse. The plant growth-promoting bacteria Pseudomonas aeruginosa and Bacillus sp. were analyzed for their ability to degrade eight priority polycyclic aromatic hydrocarbons, achieving a removal rate for naphthalene (80%), acenaphthene (> 60%), anthracene (> 50%), benzo(a)anthracene (> 60%), benzo(a)pyrene (> 50%) and dibenzo(a,h)anthracene (> 90%) in the treatments with and without plants. R. mangle L. demonstrated a removal rate above 50% for acenaphthene and fluoranthene. The bacterial strains promoted the development of the plant propagule in 55% of sediment contaminated with diesel. Scanning electron microscopy revealed the formation of biofilms by the strains in the roots of the plants in contact with the diesel. Thus, the interaction between Rhizophora mangle L. and the bacterial strains (Bacillus sp. and P. aeruginosa) demonstrated the potential of the strains to degrade diesel and bioremediate mangroves impacted by diesel oil.

2.
Genome Announc ; 3(6)2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26586881

RESUMO

Bacillus amyloliquefaciens strain 629 is an endophyte isolated from Theobroma cacao L. Here, we report the draft genome sequence (3.9 Mb) of B. amyloliquefaciens strain 629 containing 16 contigs (3,903,367 bp), 3,912 coding sequences, and an average 46.5% G+C content.

3.
An Acad Bras Cienc ; 84(2): 495-508, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22652760

RESUMO

The genus Leuconostoc belongs to a group of lactic acid bacteria usually isolated from fermented vegetables, which includes species involved in the production of exopolysaccharides (EPS). These biopolymers possess considerable commercial potential. Because of the wide variety of industrial applications of EPS, this study aimed to produce and characterize the native exopolysaccharide strain Leuconostoc pseudomesenteroides R2, which was isolated from cabbage collected in a semi-arid region of Bahia. We employed the following conditions for the production of EPS: 10.7% sucrose, pH 8.2, without agitation and incubation at 28ºC for 30 hours. The fermentation broth was treated with ethanol and generated two types of polysaccharide substances (EPS I and EPS II). The identification of EPS I and EPS II was conducted using FT-IR, (1)H, (13)C and DEPT-135 NMR spectra. The two substances were identified as linear dextran α polysaccharides (1 → 6) which indicated different characteristics with respect to thermal analysis and density of free packaging, viscosity and time of solubilization. Both dextrans are of low density, possess high thermal stability and exhibited the behavior characteristic of pseudoplastic polymers.


Assuntos
Brassica/microbiologia , Leuconostoc/metabolismo , Polissacarídeos Bacterianos/biossíntese , Fermentação , Espectroscopia de Ressonância Magnética , Polissacarídeos Bacterianos/isolamento & purificação , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...